Refine Your Search

Topic

Author

Search Results

Technical Paper

Review of NASA Antiskid Braking Research

1982-02-01
821393
NASA antiskid braking system research programs are reviewed. These programs include experimental studies of four antiskid systems on the Langley Landing Loads Track, flight tests with a DC-9 airplane, and computer simulation studies. Results from these research efforts include identification of factors contributing to degraded antiskid performance under adverse weather conditions, tire tread temperature measurements during antiskid braking on dry runway surfaces, and an assessment of the accuracy of various brake pressure-torque computer models. This information should lead to the development of better antiskid systems in the future.
Technical Paper

Air Transport Flight Parameter Measurements Program – Concepts and Benefits

1980-09-01
801132
A program is described in which statistical flight loads and operating practice data for airline transports in current operations are obtained from existing onboard digital flight data recorders. These data, primarily intended for use by manufacturers in updating design criteria, were obtained from narrow-body and wide-body jets. Unique procedures developed for editing and processing the data are discussed and differences from previous NACA/NASA VGH analog data are noted. The program is being expanded to include control surface and ground-operational parameters. Efforts to develop an onboard data processing system to derive direct statistical aircraft operating parameters are reviewed.
Technical Paper

Spin Flight Research Summary

1979-02-01
790565
An extensive general aviation stall/spin research program is underway at the NASA Langley Research Center. Flight tests have examined the effects of tail design, wing leading edge design, mass distribution, and minor airframe modifications on spin and recovery characteristics. Results and observations on test techniques are presented for the first airplane in the program. Configuration changes produced spins varying from easily recoverable slow, steep spins to unrecoverable, fast flat spins.
Technical Paper

Elements Affecting Runway Traction

1974-02-01
740496
The five basic elements affecting runway traction for jet transport aircraft operation are identified and described in terms of pilot, aircraft system, atmospheric, tire, and pavement performance factors or parameters. Runway traction is so affected by the interaction of these elements that it becomes an impossible task to discuss the effects of each element individually. For this reason, this paper discusses runway traction under the general headings of dry, wet and flooded, and snow and ice conditions. Where possible, research results are summarized, and means for restoring or improving runway traction for these different conditions are discussed.
Technical Paper

Light Aircraft Crash Safety Program

1974-02-01
740353
The Federal Aviation Administration (FAA) and the National Aeronautics and Space Administration (NASA) have joined forces in a General Aviation Crashworthiness Program. This paper describes the research and development tasks of the program which are the responsibility of NASA. NASA is embarked upon research and development tasks aimed at providing the general aviation industry with a reliable crashworthy airframe design technology. The goals of the NASA program are: reliable analytical techniques for predicting the nonlinear behavior of structures; significant design improvements of airframes; and simulated full-scale crash test data. The analytical tools will include both simplified procedures for estimating energy absorption characteristics and more complex computer programs for analysis of general airframe structures under crash loading conditions.
Technical Paper

APPLICATIONS OF ADVANCED AERODYNAMIC TECHNOLOGY TO LIGHT AIRCRAFT

1973-02-01
730318
This paper discusses a project for adapting advanced technology, much of it borrowed from the jet transport, to general aviation design practice. The NASA funded portion of the work began in 1969 at the University of Kansas and resulted in a smaller, experimental wing with spoilers and powerful flap systems for a Cessna Cardinal airplane. The objective was to obtain increased cruise performance and improved ride quality while maintaining the take-off and landing speeds of the unmodified airplane. Some flight data and research pilot comments are presented. The project was expanded in 1972 to include a light twin-engine airplane. For the twin there was the added incentive of a potential increase in single-engine climb performance. The expanded project is a joint effort involving the University of Kansas, Piper Aircraft Company, Robertson Aircraft Company, and Wichita State University. The use of a new high-lift Whitcomb airfoil is planned for both the wing and the propellers.
Technical Paper

NASA Aerodynamic Research Applicable to Business Aircraft

1971-02-01
710378
A review is made of NASA aerodynamic research of interest to the designer of business aircraft. The results of wind-tunnel and flight studies of several current aircraft are summarized. The attainment of STOL performance is discussed and the effectiveness of several lift augmentation concepts is examined. Finally, the potentialities and problems of flight at and beyond the speed of sound are discussed.
X